FuXi-Ocean: A Global Ocean Forecasting System with Sub-Daily Resolution
FuXi-Ocean: A Global Ocean Forecasting System with Sub-Daily Resolution*Qiusheng Huang, Yuan Niu, Xiaohui Zhong, Anboyu Guo, Lei Chen, Dianjun Zhang, Xuefeng Zhang, Hao Li*---* **First Data-Driven Sub-Daily Global Forecast:** FuXi-Ocean is the first deep learning-based global ocean forecasting model to achieve six-hour temporal resolution at an eddy-resolving 1/12° spatial resolution, with vertical coverage extending up to 1500 meters. This capability addresses a crucial need for high-frequency predictions that traditional numerical models struggle to deliver efficiently.* **Adaptive Temporal Modeling Innovation:** A key component of the model is the **Mixture-of-Time (MoT) module**, which adaptively integrates predictions from multiple temporal contexts based on variable-specific reliability. This mechanism is crucial for accommodating the diverse temporal dynamics of different ocean variables (e.g., fast-changing surface variables vs. slowly evolving deep-ocean processes) and effectively mitigates the accumulation of forecast errors in sequential prediction.* **Superior Performance and Efficiency:** The model demonstrates superior skill in predicting key variables (temperature, salinity, and currents) compared to state-of-the-art operational numerical forecasting systems (like HYCOM, BLK, and FOAM) at sub-daily intervals. Furthermore, it achieves this high performance with remarkable data efficiency, requiring only approximately 9 years of training data and relying solely on ocean variables (T, S, U, V, SSH) as input, without external data dependencies like atmospheric forcing.* **High-Impact Applications:** By providing accurate, high-resolution, sub-daily forecasts, FuXi-Ocean creates critical opportunities for maritime operations, including improved navigation, search and rescue, oil spill trajectory tracking, and enhanced marine resource management, particularly due to its comprehensive vertical coverage (0-1500 m).