Powered by RND
PodcastsCienciasHemispherics

Hemispherics

Hemispherics
Hemispherics
Último episodio

Episodios disponibles

5 de 82
  • #80: El tracto corticoespinal: All in
    En este episodio, nos sumergimos en la vía motora más determinante del sistema nervioso humano: el tracto corticoespinal. A través de un recorrido detallado por su evolución, desarrollo, anatomía y función, analizamos por qué esta vía representa la gran apuesta evolutiva por la motricidad fina y por qué su lesión tiene consecuencias tan devastadoras. Hablamos de neurofisiología, de plasticidad, de evaluación con TMS y DTI, de terapias intensivas, neuromodulación, farmacología, robótica y de las posibilidades —y límites— reales de su regeneración tras un ictus. Si te interesa entender en profundidad cómo se ejecuta el movimiento voluntario y qué ocurre cuando esa vía falla, este episodio es para ti. Referencias del episodio: 1. Alawieh, A., Tomlinson, S., Adkins, D., Kautz, S., & Feng, W. (2017). Preclinical and Clinical Evidence on Ipsilateral Corticospinal Projections: Implication for Motor Recovery. Translational stroke research, 8(6), 529–540. https://doi.org/10.1007/s12975-017-0551-5 (https://pubmed.ncbi.nlm.nih.gov/28691140/). 2. Cho, M. J., Yeo, S. S., Lee, S. J., & Jang, S. H. (2023). Correlation between spasticity and corticospinal/corticoreticular tract status in stroke patients after early stage. Medicine, 102(17), e33604. https://doi.org/10.1097/MD.0000000000033604 (https://pubmed.ncbi.nlm.nih.gov/37115067/). 3. Dalamagkas, K., Tsintou, M., Rathi, Y., O'Donnell, L. J., Pasternak, O., Gong, X., Zhu, A., Savadjiev, P., Papadimitriou, G. M., Kubicki, M., Yeterian, E. H., & Makris, N. (2020). Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography. Brain imaging and behavior, 14(3), 696–714. https://doi.org/10.1007/s11682-018-0006-y (https://pubmed.ncbi.nlm.nih.gov/30617788/). 4. Duque-Parra, Jorge Eduardo, Mendoza-Zuluaga, Julián, & Barco-Ríos, John. (2020). El Tracto Cortico Espinal: Perspectiva Histórica. International Journal of Morphology, 38(6), 1614-1617. https://dx.doi.org/10.4067/S0717-95022020000601614 (https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022020000601614). 5. Eyre, J. A., Miller, S., Clowry, G. J., Conway, E. A., & Watts, C. (2000). Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain : a journal of neurology, 123 ( Pt 1), 51–64. https://doi.org/10.1093/brain/123.1.51 (https://pubmed.ncbi.nlm.nih.gov/10611120/). 6. He, J., Zhang, F., Pan, Y., Feng, Y., Rushmore, J., Torio, E., Rathi, Y., Makris, N., Kikinis, R., Golby, A. J., & O'Donnell, L. J. (2023). Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods. Human brain mapping, 44(17), 6055–6073. https://doi.org/10.1002/hbm.26497 (https://pubmed.ncbi.nlm.nih.gov/37792280/). 7. Huang, L., Yi, L., Huang, H., Zhan, S., Chen, R., & Yue, Z. (2024). Corticospinal tract: a new hope for the treatment of post-stroke spasticity. Acta neurologica Belgica, 124(1), 25–36. https://doi.org/10.1007/s13760-023-02377-w (https://pubmed.ncbi.nlm.nih.gov/37704780/). 8. Kazim, S. F., Bowers, C. A., Cole, C. D., Varela, S., Karimov, Z., Martinez, E., Ogulnick, J. V., & Schmidt, M. H. (2021). Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Molecular neurobiology, 58(11), 5494–5516. https://doi.org/10.1007/s12035-021-02484-w (https://pubmed.ncbi.nlm.nih.gov/34341881/). 9. Kwon, Y. M., Kwon, H. G., Rose, J., & Son, S. M. (2016). The Change of Intra-cerebral CST Location during Childhood and Adolescence; Diffusion Tensor Tractography Study. Frontiers in human neuroscience, 10, 638. https://doi.org/10.3389/fnhum.2016.00638 (https://pubmed.ncbi.nlm.nih.gov/28066209/). 10. Lemon, R. N., Landau, W., Tutssel, D., & Lawrence, D. G. (2012). Lawrence and Kuypers (1968a, b) revisited: copies of the original filmed material from their classic papers in Brain. Brain : a journal of neurology, 135(Pt 7), 2290–2295. https://doi.org/10.1093/brain/aws037 (https://pubmed.ncbi.nlm.nih.gov/22374938/). 11. Li S. (2017). Spasticity, Motor Recovery, and Neural Plasticity after Stroke. Frontiers in neurology, 8, 120. https://doi.org/10.3389/fneur.2017.00120 (https://pubmed.ncbi.nlm.nih.gov/28421032/). 12. Liu, Z., Chopp, M., Ding, X., Cui, Y., & Li, Y. (2013). Axonal remodeling of the corticospinal tract in the spinal cord contributes to voluntary motor recovery after stroke in adult mice. Stroke, 44(7), 1951–1956. https://doi.org/10.1161/STROKEAHA.113.001162 (https://pubmed.ncbi.nlm.nih.gov/23696550/). 13. Liu, K., Lu, Y., Lee, J. K., Samara, R., Willenberg, R., Sears-Kraxberger, I., Tedeschi, A., Park, K. K., Jin, D., Cai, B., Xu, B., Connolly, L., Steward, O., Zheng, B., & He, Z. (2010). PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nature neuroscience, 13(9), 1075–1081. https://doi.org/10.1038/nn.2603 (https://pubmed.ncbi.nlm.nih.gov/20694004/). 14. Schieber M. H. (2007). Chapter 2 Comparative anatomy and physiology of the corticospinal system. Handbook of clinical neurology, 82, 15–37. https://doi.org/10.1016/S0072-9752(07)80005-4 (https://pubmed.ncbi.nlm.nih.gov/18808887/). 15. Stinear, C. M., Barber, P. A., Smale, P. R., Coxon, J. P., Fleming, M. K., & Byblow, W. D. (2007). Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain : a journal of neurology, 130(Pt 1), 170–180. https://doi.org/10.1093/brain/awl333 (https://pubmed.ncbi.nlm.nih.gov/17148468/). 16. Usuda, N., Sugawara, S. K., Fukuyama, H., Nakazawa, K., Amemiya, K., & Nishimura, Y. (2022). Quantitative comparison of corticospinal tracts arising from different cortical areas in humans. Neuroscience research, 183, 30–49. https://doi.org/10.1016/j.neures.2022.06.008 (https://pubmed.ncbi.nlm.nih.gov/35787428/). 17. Ward, N. S., Brander, F., & Kelly, K. (2019). Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme. Journal of neurology, neurosurgery, and psychiatry, 90(5), 498–506. https://doi.org/10.1136/jnnp-2018-319954 (https://pubmed.ncbi.nlm.nih.gov/30770457/). 18. Welniarz, Q., Dusart, I., & Roze, E. (2017). The corticospinal tract: Evolution, development, and human disorders. Developmental neurobiology, 77(7), 810–829. https://doi.org/10.1002/dneu.22455 (https://pubmed.ncbi.nlm.nih.gov/27706924/).
    --------  
    1:41:42
  • #79: La denervación en la lesión medular y la estimulación eléctrica
    En este episodio, profundizamos en uno de los fenómenos más devastadores pero menos comprendidos en neurorrehabilitación: la denervación muscular tras una lesión medular. A través de una revisión exhaustiva de la literatura científica y de la experiencia clínica, abordamos qué ocurre realmente con los músculos que han perdido su inervación, cómo se transforman con el tiempo y qué posibilidades tenemos para intervenir. Hablamos sobre neurofisiología, degeneración axonal, fases de la denervación, y cómo la estimulación eléctrica —especialmente con pulsos largos— puede modificar el curso degenerativo incluso años después de la lesión. Exploramos también el Proyecto RISE, los protocolos clínicos actuales y las implicaciones terapéuticas reales de aplicar electroestimulación en músculos completamente denervados. Si trabajas en neurorrehabilitación o te interesa la ciencia aplicada a la recuperación funcional, este episodio es para ti. Referencias del episodio: 1. Alberty, M., Mayr, W., & Bersch, I. (2023). Electrical Stimulation for Preventing Skin Injuries in Denervated Gluteal Muscles-Promising Perspectives from a Case Series and Narrative Review. Diagnostics (Basel, Switzerland), 13(2), 219. https://doi.org/10.3390/diagnostics13020219 (https://pubmed.ncbi.nlm.nih.gov/36673029/). 2. Beauparlant, J., van den Brand, R., Barraud, Q., Friedli, L., Musienko, P., Dietz, V., & Courtine, G. (2013). Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain : a journal of neurology, 136(Pt 11), 3347–3361. https://doi.org/10.1093/brain/awt204 (https://pubmed.ncbi.nlm.nih.gov/24080153/). 3. Bersch, I., & Fridén, J. (2021). Electrical stimulation alters muscle morphological properties in denervated upper limb muscles. EBioMedicine, 74, 103737. https://doi.org/10.1016/j.ebiom.2021.103737 (https://pubmed.ncbi.nlm.nih.gov/34896792/). 4. Bersch, I., & Mayr, W. (2023). Electrical stimulation in lower motoneuron lesions, from scientific evidence to clinical practice: a successful transition. European journal of translational myology, 33(2), 11230. https://doi.org/10.4081/ejtm.2023.11230 (https://pmc.ncbi.nlm.nih.gov/articles/PMC10388603/). 5. Burnham, R., Martin, T., Stein, R., Bell, G., MacLean, I., & Steadward, R. (1997). Skeletal muscle fibre type transformation following spinal cord injury. Spinal cord, 35(2), 86–91. https://doi.org/10.1038/sj.sc.3100364 (Burnham, R., Martin, T., Stein, R., Bell, G., MacLean, I., & Steadward, R. (1997). Skeletal muscle fibre type transformation following spinal cord injury. Spinal cord, 35(2), 86–91. https://doi.org/10.1038/sj.sc.3100364). 6. Carlson B. M. (2014). The Biology of Long-Term Denervated Skeletal Muscle. European journal of translational myology, 24(1), 3293. https://doi.org/10.4081/ejtm.2014.3293 (https://pubmed.ncbi.nlm.nih.gov/26913125/). 7. Carraro, U., Boncompagni, S., Gobbo, V., Rossini, K., Zampieri, S., Mosole, S., Ravara, B., Nori, A., Stramare, R., Ambrosio, F., Piccione, F., Masiero, S., Vindigni, V., Gargiulo, P., Protasi, F., Kern, H., Pond, A., & Marcante, A. (2015). Persistent Muscle Fiber Regeneration in Long Term Denervation. Past, Present, Future. European journal of translational myology, 25(2), 4832. https://doi.org/10.4081/ejtm.2015.4832 (https://pubmed.ncbi.nlm.nih.gov/26913148/). 8. Chandrasekaran, S., Davis, J., Bersch, I., Goldberg, G., & Gorgey, A. S. (2020). Electrical stimulation and denervated muscles after spinal cord injury. Neural regeneration research, 15(8), 1397–1407. https://doi.org/10.4103/1673-5374.274326 (https://pubmed.ncbi.nlm.nih.gov/31997798/). 9. Ding, Y., Kastin, A. J., & Pan, W. (2005). Neural plasticity after spinal cord injury. Current pharmaceutical design, 11(11), 1441–1450. https://doi.org/10.2174/1381612053507855 (https://pmc.ncbi.nlm.nih.gov/articles/PMC3562709/). 10. Dolbow, D. R., Bersch, I., Gorgey, A. S., & Davis, G. M. (2024). The Clinical Management of Electrical Stimulation Therapies in the Rehabilitation of Individuals with Spinal Cord Injuries. Journal of clinical medicine, 13(10), 2995. https://doi.org/10.3390/jcm13102995 (https://pubmed.ncbi.nlm.nih.gov/38792536/). 11. Hofer, C., Mayr, W., Stöhr, H., Unger, E., & Kern, H. (2002). A stimulator for functional activation of denervated muscles. Artificial organs, 26(3), 276–279. https://doi.org/10.1046/j.1525-1594.2002.06951.x (https://pubmed.ncbi.nlm.nih.gov/11940032/). 12. Kern, H., Hofer, C., Mödlin, M., Forstner, C., Raschka-Högler, D., Mayr, W., & Stöhr, H. (2002). Denervated muscles in humans: limitations and problems of currently used functional electrical stimulation training protocols. Artificial organs, 26(3), 216–218. https://doi.org/10.1046/j.1525-1594.2002.06933.x (https://pubmed.ncbi.nlm.nih.gov/11940016/). 13. Kern, H., Salmons, S., Mayr, W., Rossini, K., & Carraro, U. (2005). Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle & nerve, 31(1), 98–101. https://doi.org/10.1002/mus.20149 (https://pubmed.ncbi.nlm.nih.gov/15389722/). 14. Kern, H., Rossini, K., Carraro, U., Mayr, W., Vogelauer, M., Hoellwarth, U., & Hofer, C. (2005). Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion. Journal of rehabilitation research and development, 42(3 Suppl 1), 43–53. https://doi.org/10.1682/jrrd.2004.05.0061 (https://pubmed.ncbi.nlm.nih.gov/16195962/). 15. Kern, H., Carraro, U., Adami, N., Hofer, C., Loefler, S., Vogelauer, M., Mayr, W., Rupp, R., & Zampieri, S. (2010). One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurological research, 32(1), 5–12. https://doi.org/10.1179/174313209X385644 (https://pubmed.ncbi.nlm.nih.gov/20092690/). 16. Kern, H., & Carraro, U. (2014). Home-Based Functional Electrical Stimulation for Long-Term Denervated Human Muscle: History, Basics, Results and Perspectives of the Vienna Rehabilitation Strategy. European journal of translational myology, 24(1), 3296. https://doi.org/10.4081/ejtm.2014.3296 (https://pmc.ncbi.nlm.nih.gov/articles/PMC4749003/). 17. Kern, H., Hofer, C., Loefler, S., Zampieri, S., Gargiulo, P., Baba, A., Marcante, A., Piccione, F., Pond, A., & Carraro, U. (2017). Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and Aging. Implications for their recovery by Functional Electrical Stimulation, updated 2017. Neurological research, 39(7), 660–666. https://doi.org/10.1080/01616412.2017.1314906 (https://pubmed.ncbi.nlm.nih.gov/28403681/). 18. Kern, H., & Carraro, U. (2020). Home-Based Functional Electrical Stimulation of Human Permanent Denervated Muscles: A Narrative Review on Diagnostics, Managements, Results and Byproducts Revisited 2020. Diagnostics (Basel, Switzerland), 10(8), 529. https://doi.org/10.3390/diagnostics10080529 (https://pubmed.ncbi.nlm.nih.gov/32751308/). 19. Ko H. Y. (2018). Revisit Spinal Shock: Pattern of Reflex Evolution during Spinal Shock. Korean journal of neurotrauma, 14(2), 47–54. https://doi.org/10.13004/kjnt.2018.14.2.47 (https://pubmed.ncbi.nlm.nih.gov/30402418/). 20. Mittal, P., Gupta, R., Mittal, A., & Mittal, K. (2016). MRI findings in a case of spinal cord Wallerian degeneration following trauma. Neurosciences (Riyadh, Saudi Arabia), 21(4), 372–373. https://doi.org/10.17712/nsj.2016.4.20160278 (https://pmc.ncbi.nlm.nih.gov/articles/PMC5224438/). 21. Pang, Q. M., Chen, S. Y., Xu, Q. J., Fu, S. P., Yang, Y. C., Zou, W. H., Zhang, M., Liu, J., Wan, W. H., Peng, J. C., & Zhang, T. (2021). Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Frontiers in immunology, 12, 751021. https://doi.org/10.3389/fimmu.2021.751021 (https://pubmed.ncbi.nlm.nih.gov/34925326/). 22. Schick, T. (Ed.). (2022). Functional electrical stimulation in neurorehabilitation: Synergy effects of technology and therapy. Springer. https://doi.org/10.1007/978-3-030-90123-3 (https://link.springer.com/book/10.1007/978-3-030-90123-3). 23. Swain, I., Burridge, J., & Street, T. (Eds.). (2024). Techniques and technologies in electrical stimulation for neuromuscular rehabilitation. The Institution of Engineering and Technology. https://shop.theiet.org/techniques-and-technologies-in-electrical-stimulation-for-neuromuscular-rehabilitation 24. van der Scheer, J. W., Goosey-Tolfrey, V. L., Valentino, S. E., Davis, G. M., & Ho, C. H. (2021). Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. Journal of neuroengineering and rehabilitation, 18(1), 99. https://doi.org/10.1186/s12984-021-00882-8 (https://pubmed.ncbi.nlm.nih.gov/34118958/). 25. Xu, X., Talifu, Z., Zhang, C. J., Gao, F., Ke, H., Pan, Y. Z., Gong, H., Du, H. Y., Yu, Y., Jing, Y. L., Du, L. J., Li, J. J., & Yang, D. G. (2023). Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Frontiers in nutrition, 10, 1099143. https://doi.org/10.3389/fnut.2023.1099143 (https://pubmed.ncbi.nlm.nih.gov/36937344/). 26. Anatomical Concepts: https://www.anatomicalconcepts.com/articles
    --------  
    1:25:03
  • #78: Entrevista a Bernat de las Heras. Ejercicio físico y neuroplasticidad
    En este episodio entrevistamos a Bernat de las Heras, investigador en neurorehabilitación y experto en neuroplasticidad post-ictus. Desde su formación inicial en Ciencias del Deporte hasta su doctorado en la Universidad McGill, Bernat ha explorado cómo el ejercicio cardiovascular —en especial el aeróbico y HIIT— puede modular la neuroplasticidad cerebral tras un ictus. Bernat nos explica los beneficios y limitaciones del entrenamiento interválico de alta intensidad, su percepción por parte de los pacientes, y cómo combinarlo de forma efectiva con otras estrategias terapéuticas. Hablamos también de aprendizaje y localización de la lesión. Una conversación profunda y práctica para entender los límites actuales de la evidencia, y al mismo tiempo, abrir nuevas vías para la rehabilitación neurológica individualizada. Referencias del episodio: 1) Ploughman, M., Attwood, Z., White, N., Doré, J. J., & Corbett, D. (2007). Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. The European journal of neuroscience, 25(11), 3453–3460. https://doi.org/10.1111/j.1460-9568.2007.05591.x (https://pubmed.ncbi.nlm.nih.gov/17553014/). 2) Jeffers, M. S., & Corbett, D. (2018). Synergistic Effects of Enriched Environment and Task-Specific Reach Training on Poststroke Recovery of Motor Function. Stroke, 49(6), 1496–1503. https://doi.org/10.1161/STROKEAHA.118.020814 (https://pubmed.ncbi.nlm.nih.gov/29752347/). 3) De Las Heras, B., Rodrigues, L., Cristini, J., Moncion, K., Ploughman, M., Tang, A., Fung, J., & Roig, M. (2024). Measuring Neuroplasticity in Response to Cardiovascular Exercise in People With Stroke: A Critical Perspective. Neurorehabilitation and neural repair, 38(4), 303–321. https://doi.org/10.1177/15459683231223513 (https://pubmed.ncbi.nlm.nih.gov/38291890/). 4) Roig, M., & de Las Heras, B. (2018). Acute cardiovascular exercise does not enhance locomotor learning in people with stroke. The Journal of physiology, 596(10), 1785–1786. https://doi.org/10.1113/JP276172 (https://pubmed.ncbi.nlm.nih.gov/29603752/). 5) Rodrigues, L., Moncion, K., Eng, J. J., Noguchi, K. S., Wiley, E., de Las Heras, B., Sweet, S. N., Fung, J., MacKay-Lyons, M., Nelson, A. J., Medeiros, D., Crozier, J., Thiel, A., Tang, A., & Roig, M. (2022). Intensity matters: protocol for a randomized controlled trial exercise intervention for individuals with chronic stroke. Trials, 23(1), 442. https://doi.org/10.1186/s13063-022-06359-w (https://pubmed.ncbi.nlm.nih.gov/35610659/). 6) Cristini, J., Kraft, V. S., De Las Heras, B., Rodrigues, L., Parwanta, Z., Hermsdörfer, J., Steib, S., & Roig, M. (2023). Differential effects of acute cardiovascular exercise on explicit and implicit motor memory: The moderating effects of fitness level. Neurobiology of learning and memory, 205, 107846. https://doi.org/10.1016/j.nlm.2023.107846 (https://pubmed.ncbi.nlm.nih.gov/37865261/). 7) Moncion, K., Rodrigues, L., De Las Heras, B., Noguchi, K. S., Wiley, E., Eng, J. J., MacKay-Lyons, M., Sweet, S. N., Thiel, A., Fung, J., Stratford, P., Richardson, J. A., MacDonald, M. J., Roig, M., & Tang, A. (2024). Cardiorespiratory Fitness Benefits of High-Intensity Interval Training After Stroke: A Randomized Controlled Trial. Stroke, 55(9), 2202–2211. https://doi.org/10.1161/STROKEAHA.124.046564 (https://pubmed.ncbi.nlm.nih.gov/39113181/). 8) De las Heras, B., Rodrigues, L., Cristini, J., Moncion, K., Dancause, N., Thiel, A., Edwards, J. D., Eng, J. J., Tang, A., & Roig, M. (2024). Lesion location changes the association between brain excitability and motor skill acquisition post-stroke. medRxiv. https://doi.org/10.1101/2024.07.30.24311146 (https://www.medrxiv.org/content/10.1101/2024.07.30.24311146v1.article-info). 9) Rodrigues, L., Moncion, K., Angelopoulos, S. A., Heras, B. L., Sweet, S., Eng, J. J., Fung, J., MacKay-Lyons, M., Tang, A., & Roig, M. (2025). Psychosocial Responses to a Cardiovascular Exercise Randomized Controlled Trial: Does Intensity Matter for Individuals Post-stroke?. Archives of physical medicine and rehabilitation, S0003-9993(25)00498-8. Advance online publication. https://doi.org/10.1016/j.apmr.2025.01.468 (https://pubmed.ncbi.nlm.nih.gov/39894292/). 10) de Las Heras, B., Rodrigues, L., Cristini, J., Weiss, M., Prats-Puig, A., & Roig, M. (2022). Does the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Modulate the Effects of Physical Activity and Exercise on Cognition?. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 28(1), 69–86. https://doi.org/10.1177/1073858420975712 (https://pubmed.ncbi.nlm.nih.gov/33300425/). 11) MacKay-Lyons, M., Billinger, S. A., Eng, J. J., Dromerick, A., Giacomantonio, N., Hafer-Macko, C., Macko, R., Nguyen, E., Prior, P., Suskin, N., Tang, A., Thornton, M., & Unsworth, K. (2020). Aerobic Exercise Recommendations to Optimize Best Practices in Care After Stroke: AEROBICS 2019 Update. Physical therapy, 100(1), 149–156. https://doi.org/10.1093/ptj/pzz153 (https://pubmed.ncbi.nlm.nih.gov/31596465/).
    --------  
    1:41:12
  • #77: Actualización en stiff-knee o rodilla rígida post-ictus
    En este episodio, actualizamos la evidencia científica sobre la rodilla rígida post-ictus o stiff-knee, ampliando lo que ya sintetizamos hace varios años en el episodio #48. Indagamos en las sinergias musculares en el stiff-knee y en sus fenotipos, para poder realizar una valoración y tratamiento más específico e individualizado. Referencias del episodio: 1. Brough, L. G., Kautz, S. A., & Neptune, R. R. (2022). Muscle contributions to pre-swing biomechanical tasks influence swing leg mechanics in individuals post-stroke during walking. Journal of neuroengineering and rehabilitation, 19(1), 55. https://doi.org/10.1186/s12984-022-01029-z (https://pubmed.ncbi.nlm.nih.gov/35659252/). 2. Chantraine, F., Schreiber, C., Pereira, J. A. C., Kaps, J., & Dierick, F. (2022). Classification of Stiff-Knee Gait Kinematic Severity after Stroke Using Retrospective k-Means Clustering Algorithm. Journal of clinical medicine, 11(21), 6270. https://doi.org/10.3390/jcm11216270 (https://pubmed.ncbi.nlm.nih.gov/36362499/) 3. Fujita, K., Tsushima, Y., Hayashi, K., Kawabata, K., Sato, M., & Kobayashi, Y. (2022). Differences in causes of stiff knee gait in knee extensor activity or ankle kinematics: A cross-sectional study. Gait & posture, 98, 187–194. https://doi.org/10.1016/j.gaitpost.2022.09.078 (https://pubmed.ncbi.nlm.nih.gov/36166956/). 4. Fujita, K., Tsushima, Y., Hayashi, K., Kawabata, K., Ogawa, T., Hori, H., & Kobayashi, Y. (2024). Altered muscle synergy structure in patients with poststroke stiff knee gait. Scientific reports, 14(1), 20295. https://doi.org/10.1038/s41598-024-71083-1 (https://pubmed.ncbi.nlm.nih.gov/39217201/). 5. Krajewski, K. T., Correa, J. S., Siu, R., Cunningham, D., & Sulzer, J. S. (2025). Mechanisms of Post-Stroke Stiff Knee Gait: A Narrative Review. American journal of physical medicine & rehabilitation, 10.1097/PHM.0000000000002678. Advance online publication. https://doi.org/10.1097/PHM.0000000000002678 (https://pubmed.ncbi.nlm.nih.gov/39815400/). 6. Lee, J., Lee, R. K., Seamon, B. A., Kautz, S. A., Neptune, R. R., & Sulzer, J. (2024). Between-limb difference in peak knee flexion angle can identify persons post-stroke with Stiff-Knee gait. Clinical biomechanics (Bristol, Avon), 120, 106351. https://doi.org/10.1016/j.clinbiomech.2024.106351 (https://pubmed.ncbi.nlm.nih.gov/39321614/). 7. Tenniglo, M. J. B., Nene, A. V., Rietman, J. S., Buurke, J. H., & Prinsen, E. C. (2023). The Effect of Botulinum Toxin Type A Injection in the Rectus Femoris in Stroke Patients Walking With a Stiff Knee Gait: A Randomized Controlled Trial. Neurorehabilitation and neural repair, 37(9), 640–651. https://doi.org/10.1177/15459683231189712 (https://pubmed.ncbi.nlm.nih.gov/37644725/).
    --------  
    32:33
  • #76: Aprendiendo Neurología con el MIR
    En este episodio traigo un formato nuevo que creo que puede ser muy útil para aprender y repasar neurología de una forma más aplicada. He cogido preguntas del examen MIR del año 2025 relacionadas con neurología y, además de responderlas, las utilizo como excusa para profundizar en cada tema.
    --------  
    1:04:14

Más podcasts de Ciencias

Acerca de Hemispherics

Hemispherics, el podcast de Fisioterapia y Neurorrehabilitación, presentado por Javier Sánchez Aguilar. En este podcast podrán encontrar: • Reseñas de libros de neurociencia, neurorrehabilitación, fisioterapia. • Comentarios de revisiones y artículos científicos relacionados con la fisioterapia y la neurorrehabilitación. • Visibilización de investigadores/as. • Exposición de temas específicos detallados sobre fisioterapia y neurorrehabilitación. • Entrevistas a fisioterapeutas y especialistas en neurorrehabilitación.
Sitio web del podcast

Escucha Hemispherics, Palabra Plena, con Gabriel Rolón y muchos más podcasts de todo el mundo con la aplicación de radio.net

Descarga la app gratuita: radio.net

  • Añadir radios y podcasts a favoritos
  • Transmisión por Wi-Fi y Bluetooth
  • Carplay & Android Auto compatible
  • Muchas otras funciones de la app
Aplicaciones
Redes sociales
v7.20.1 | © 2007-2025 radio.de GmbH
Generated: 7/4/2025 - 10:56:07 AM