Powered by RND
PodcastsCienciasHemispherics
Escucha Hemispherics en la aplicación
Escucha Hemispherics en la aplicación
(1 500)(249 730)
Favoritos
Despertador
Sleep timer

Hemispherics

Podcast Hemispherics
Hemispherics
Hemispherics, el podcast de Fisioterapia y Neurorrehabilitación, presentado por Javier Sánchez Aguilar. En este podcast podrán encontrar: • Reseñas de libros...

Episodios disponibles

5 de 78
  • #76: Aprendiendo Neurología con el MIR
    En este episodio traigo un formato nuevo que creo que puede ser muy útil para aprender y repasar neurología de una forma más aplicada. He cogido preguntas del examen MIR del año 2025 relacionadas con neurología y, además de responderlas, las utilizo como excusa para profundizar en cada tema.
    --------  
    1:04:14
  • #75: Desentrañando el sistema de neuronas espejo
    En este episodio, exploramos a fondo el fascinante pero controvertido sistema de las neuronas espejo. Desentrañamos su descubrimiento, su neurofisiología, y el papel que desempeñan en procesos como la comprensión de acciones, la imitación, la empatía y el lenguaje. Además, abordamos las críticas más relevantes de autores como Hickok y Heyes, reflexionamos sobre su relevancia en la neurorrehabilitación y analizamos su conexión con otras redes cerebrales como el cerebelo. Un episodio esencial para entender el estado actual de la ciencia detrás de estas células y su impacto en la cognición y la clínica. Referencias del episodio: 1. Antonioni, A., Raho, E. M., Straudi, S., Granieri, E., Koch, G., & Fadiga, L. (2024). The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neuroscience and biobehavioral reviews, 164, 105830. https://doi.org/10.1016/j.neubiorev.2024.105830 (https://pubmed.ncbi.nlm.nih.gov/39069236/9. 2. Bonini, L., Rotunno, C., Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later: implications and applications. Trends in cognitive sciences, 26(9), 767–781. https://doi.org/10.1016/j.tics.2022.06.003 (https://pubmed.ncbi.nlm.nih.gov/35803832/). 3. Borges, L. R., Fernandes, A. B., Oliveira Dos Passos, J., Rego, I. A. O., & Campos, T. F. (2022). Action observation for upper limb rehabilitation after stroke. The Cochrane database of systematic reviews, 8(8), CD011887. https://doi.org/10.1002/14651858.CD011887.pub3 (https://pubmed.ncbi.nlm.nih.gov/35930301/). 4. Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current biology : CB, 17(17), 1527–1531. https://doi.org/10.1016/j.cub.2007.08.006 (https://pubmed.ncbi.nlm.nih.gov/17716898/) 5. Dinstein I. (2008). Human cortex: reflections of mirror neurons. Current biology : CB, 18(20), R956–R959. https://doi.org/10.1016/j.cub.2008.09.007 (https://pubmed.ncbi.nlm.nih.gov/18957251/). 6. Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: a magnetic stimulation study. Journal of neurophysiology, 73(6), 2608–2611. https://doi.org/10.1152/jn.1995.73.6.2608 (https://pubmed.ncbi.nlm.nih.gov/7666169/). 7. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain : a journal of neurology, 119 ( Pt 2), 593–609. https://doi.org/10.1093/brain/119.2.593 (https://pubmed.ncbi.nlm.nih.gov/8800951/). 8. Gallese, V., Gernsbacher, M. A., Heyes, C., Hickok, G., & Iacoboni, M. (2011). Mirror Neuron Forum. Perspectives on psychological science : a journal of the Association for Psychological Science, 6(4), 369–407. https://doi.org/10.1177/1745691611413392 (https://pubmed.ncbi.nlm.nih.gov/25520744/). 9. Glenberg, A. M. (2015). Big Myth or Major Miss? [Review of The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition, by Gregory Hickok]. The American Journal of Psychology, 128(4), 533–539. https://doi.org/10.5406/amerjpsyc.128.4.0533 (https://www.jstor.org/stable/10.5406/amerjpsyc.128.4.0533). 10. Heyes, C., & Catmur, C. (2022). What Happened to Mirror Neurons?. Perspectives on psychological science : a journal of the Association for Psychological Science, 17(1), 153–168. https://doi.org/10.1177/1745691621990638 (https://pmc.ncbi.nlm.nih.gov/articles/PMC8785302/). 11. Hickok G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of cognitive neuroscience, 21(7), 1229–1243. https://doi.org/10.1162/jocn.2009.21189 (https://pmc.ncbi.nlm.nih.gov/articles/PMC2773693/). 12. Hickok, G. (2014). The myth of mirror neurons: The real neuroscience of communication and cognition. W. W. Norton & Company (https://wwnorton.com/books/9780393089615). 13. La Touche, R. (2020). Métodos de representación del movimiento en rehabilitación. Construyendo un marco conceptual para la aplicación en clínica. Journal of MOVE and Therapeutic Science, 2(2), 152–159. https://doi.org/10.37382/jomts.v2i2.42 (https://publicaciones.lasallecampus.es/index.php/MOVE/article/view/42). 14. Lingnau, A., Gesierich, B., & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9925–9930. https://doi.org/10.1073/pnas.0902262106 (https://pmc.ncbi.nlm.nih.gov/articles/PMC2701024/). 15. Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience and biobehavioral reviews, 36(1), 341–349. https://doi.org/10.1016/j.neubiorev.2011.07.004 (https://pubmed.ncbi.nlm.nih.gov/21782846/). 16. Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current biology : CB, 20(8), 750–756. https://doi.org/10.1016/j.cub.2010.02.045 (https://pubmed.ncbi.nlm.nih.gov/20381353/). 17. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain research. Cognitive brain research, 3(2), 131–141. https://doi.org/10.1016/0926-6410(95)00038-0 (https://www.sciencedirect.com/science/article/pii/0926641095000380?via%3Dihub). 18. Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio, F. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental brain research, 111(2), 246–252. https://doi.org/10.1007/BF00227301 (https://pubmed.ncbi.nlm.nih.gov/8891654/). 19. Rizzolatti, G., Fabbri-Destro, M., & Cattaneo, L. (2009). Mirror neurons and their clinical relevance. Nature clinical practice. Neurology, 5(1), 24–34. https://doi.org/10.1038/ncpneuro0990 (https://pubmed.ncbi.nlm.nih.gov/19129788/). 20. Rizzolatti, G., & Sinigaglia, C. (2015). A curious book on mirror neurons and their myth: Review of Gregory Hickok’s The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition (https://bpb-us-e1.wpmucdn.com/sites.ucsc.edu/dist/0/158/files/2015/04/Rizzolatti-Sinigaglia-Review.pdf). 21. Southgate, V., & Hamilton, A. F. (2008). Unbroken mirrors: challenging a theory of Autism. Trends in cognitive sciences, 12(6), 225–229. https://doi.org/10.1016/j.tics.2008.03.005 (https://pubmed.ncbi.nlm.nih.gov/18479959/). 22. Tarhan, L. Y., Watson, C. E., & Buxbaum, L. J. (2015). Shared and Distinct Neuroanatomic Regions Critical for Tool-related Action Production and Recognition: Evidence from 131 Left-hemisphere Stroke Patients. Journal of cognitive neuroscience, 27(12), 2491–2511. https://doi.org/10.1162/jocn_a_00876 (https://pmc.ncbi.nlm.nih.gov/articles/PMC8139360/). 23. Ventoulis, I., Gkouma, K. R., Ventouli, S., & Polyzogopoulou, E. (2024). The Role of Mirror Therapy in the Rehabilitation of the Upper Limb's Motor Deficits After Stroke: Narrative Review. Journal of clinical medicine, 13(24), 7808. https://doi.org/10.3390/jcm13247808 (https://pubmed.ncbi.nlm.nih.gov/39768730/).
    --------  
    1:38:29
  • #74: Actualización en espasticidad V
    En este episodio, resumimos varios artículos científicos sobre espasticidad, en cuanto a conceptualización, neurofisiología, evaluación y tratamiento. Es una forma de actualización anual sobre esta temática tan estudiada en neurociencia. Hablamos sobre nuevos estudios de neuroimagen sobre la espasticidad, consensos sobre evaluación y desarrollos emergentes de tratamientos médicos. Referencias del episodio: 1. Cho, M. J., Yeo, S. S., Lee, S. J., & Jang, S. H. (2023). Correlation between spasticity and corticospinal/corticoreticular tract status in stroke patients after early stage. Medicine, 102(17), e33604. https://doi.org/10.1097/MD.0000000000033604 (https://pubmed.ncbi.nlm.nih.gov/37115067/). 2. Gal, O., Baude, M., Deltombe, T., Esquenazi, A., Gracies, J. M., Hoskovcova, M., Rodriguez-Blazquez, C., Rosales, R., Satkunam, L., Wissel, J., Mestre, T., Sánchez-Ferro, Á., Skorvanek, M., Tosin, M. H. S., Jech, R., & members of the MDS Clinical Outcome Assessments Scientific Evaluation Committee and MDS Spasticity Study group (2024). Clinical Outcome Assessments for Spasticity: Review, Critique, and Recommendations. Movement disorders : official journal of the Movement Disorder Society, 10.1002/mds.30062. Advance online publication. https://doi.org/10.1002/mds.30062 (https://pubmed.ncbi.nlm.nih.gov/39629752/). 3. Gracies J. M. (2005). Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle & nerve, 31(5), 535–551. https://doi.org/10.1002/mus.20284 (https://pubmed.ncbi.nlm.nih.gov/15714510/). 4. Gracies J. M. (2005). Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle & nerve, 31(5), 552–571. https://doi.org/10.1002/mus.20285 (https://pubmed.ncbi.nlm.nih.gov/15714511/). 5. Gracies, J. M., Alter, K. E., Biering-Sørensen, B., Dewald, J. P. A., Dressler, D., Esquenazi, A., Franco, J. H., Jech, R., Kaji, R., Jin, L., Lim, E. C. H., Raghavan, P., Rosales, R., Shalash, A. S., Simpson, D. M., Suputtitada, A., Vecchio, M., Wissel, J., & Spasticity Study Group of the International Parkinson and Movement Disorders Society (2024). Spastic Paresis: A Treatable Movement Disorder. Movement disorders : official journal of the Movement Disorder Society, 10.1002/mds.30038. Advance online publication. https://doi.org/10.1002/mds.30038 (https://pubmed.ncbi.nlm.nih.gov/39548808/). 6. Guo, X., Wallace, R., Tan, Y., Oetomo, D., Klaic, M., & Crocher, V. (2022). Technology-assisted assessment of spasticity: a systematic review. Journal of neuroengineering and rehabilitation, 19(1), 138. https://doi.org/10.1186/s12984-022-01115-2 (https://pubmed.ncbi.nlm.nih.gov/36494721/). 7. He, J., Luo, A., Yu, J., Qian, C., Liu, D., Hou, M., & Ma, Y. (2023). Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Frontiers in neurology, 14, 1121323. https://doi.org/10.3389/fneur.2023.1121323 (https://pubmed.ncbi.nlm.nih.gov/37475737/). 8. Levin, M. F., Piscitelli, D., & Khayat, J. (2024). Tonic stretch reflex threshold as a measure of disordered motor control and spasticity - A critical review. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 165, 138–150. https://doi.org/10.1016/j.clinph.2024.06.019 (https://pubmed.ncbi.nlm.nih.gov/39029274/). 9. Li, S., Winston, P., & Mas, M. F. (2024). Spasticity Treatment Beyond Botulinum Toxins. Physical medicine and rehabilitation clinics of North America, 35(2), 399–418. https://doi.org/10.1016/j.pmr.2023.06.009 (https://pubmed.ncbi.nlm.nih.gov/38514226/). 10. Qin, Y., Qiu, S., Liu, X., Xu, S., Wang, X., Guo, X., Tang, Y., & Li, H. (2022). Lesions causing post-stroke spasticity localize to a common brain network. Frontiers in aging neuroscience, 14, 1011812. https://doi.org/10.3389/fnagi.2022.1011812 (https://pubmed.ncbi.nlm.nih.gov/36389077/). 11. Suputtitada, A., Chatromyen, S., Chen, C. P. C., & Simpson, D. M. (2024). Best Practice Guidelines for the Management of Patients with Post-Stroke Spasticity: A Modified Scoping Review. Toxins, 16(2), 98. https://doi.org/10.3390/toxins16020098 (https://pubmed.ncbi.nlm.nih.gov/38393176/). 12. Winston, P., Mills, P. B., Reebye, R., & Vincent, D. (2019). Cryoneurotomy as a Percutaneous Mini-invasive Therapy for the Treatment of the Spastic Limb: Case Presentation, Review of the Literature, and Proposed Approach for Use. Archives of rehabilitation research and clinical translation, 1(3-4), 100030. https://doi.org/10.1016/j.arrct.2019.100030 (https://pubmed.ncbi.nlm.nih.gov/33543059/).
    --------  
    1:00:01
  • #73: Entrevista a Leonardo Boccuni. Prehabilitación en tumores cerebrales y neurorrehabilitación del miembro superior
    En esta entrevista, charlo con Leonardo Boccuni, fisioterapeuta italiano que acaba de presentar (noviembre, 2024) su tesis doctoral por la Universidad Autónoma de Barcelona sobre prehabilitación de tumores cerebrales mediante neuromodulación cerebral no invasiva y terapia intensiva, dentro del Proyecto PREHABILITA, del Institut Guttmann (Barcelona, España). Leonardo nos habla sobre este proyecto, su originalidad y complejidad, debido a la confluencia de áreas como la neurocirugía, neuroimagen, neurofisiología, neurorrehabilitación y programación informática. Además, nos cuenta sus aprendizajes en la investigación y práctica clínica sobre la neurorrehabilitación del miembro superior. Referencias del episodio: 1. Boccuni, L., et al (2018). Is There Full or Proportional Somatosensory Recovery in the Upper Limb After Stroke? Investigating Behavioral Outcome and Neural Correlates. Neurorehabilitation and neural repair, 32(8), 691–700. https://doi.org/10.1177/1545968318787060 (https://pubmed.ncbi.nlm.nih.gov/29991331/). 2. Boccuni, L., et al (2019). Premotor dorsal white matter integrity for the prediction of upper limb motor impairment after stroke. Scientific reports, 9(1), 19712. https://doi.org/10.1038/s41598-019-56334-w (https://pubmed.ncbi.nlm.nih.gov/31873186/). 3. Boccuni, L.,et al (2022). Time to reconcile research findings and clinical practice on upper limb neurorehabilitation. Frontiers in neurology, 13, 939748. https://doi.org/10.3389/fneur.2022.939748 (https://pubmed.ncbi.nlm.nih.gov/35928130/). 4. Boccuni, L., et al (2023). Neuromodulation-induced prehabilitation to leverage neuroplasticity before brain tumor surgery: a single-cohort feasibility trial protocol. Frontiers in neurology, 14, 1243857. https://doi.org/10.3389/fneur.2023.1243857 (https://pubmed.ncbi.nlm.nih.gov/37849833/). 5. Boccuni, L., et al (2024). Exploring the neural basis of non-invasive prehabilitation in brain tumour patients: An fMRI-based case report of language network plasticity. Frontiers in oncology, 14, 1390542. https://doi.org/10.3389/fonc.2024.1390542 (https://pubmed.ncbi.nlm.nih.gov/38826790/). 6. Boccuni, L., et al (2024). Non-invasive prehabilitation to foster widespread fMRI cortical reorganization before brain tumor surgery: lessons from a case series. Journal of neuro-oncology, 170(1), 185–198. https://doi.org/10.1007/s11060-024-04774-4 (https://pubmed.ncbi.nlm.nih.gov/39044115/). 7. Essers, B., Meyer, S., De Bruyn, N., Van Gils, A., Boccuni, L., Tedesco Triccas, L., Peeters, A., Thijs, V., Feys, H., & Verheyden, G. (2019). Mismatch between observed and perceived upper limb function: an eye-catching phenomenon after stroke. Disability and rehabilitation, 41(13), 1545–1551. https://doi.org/10.1080/09638288.2018.1442504 (https://pubmed.ncbi.nlm.nih.gov/29564912/). 8. Salvalaggio, S., Boccuni, L., & Turolla, A. (2023). Patient's assessment and prediction of recovery after stroke: a roadmap for clinicians. Archives of physiotherapy, 13(1), 13. https://doi.org/10.1186/s40945-023-00167-4 (https://pubmed.ncbi.nlm.nih.gov/37337288/). 9. Yilmazer, C., Boccuni, L., Thijs, L., & Verheyden, G. (2019). Effectiveness of somatosensory interventions on somatosensory, motor and functional outcomes in the upper limb post-stroke: A systematic review and meta-analysis. NeuroRehabilitation, 44(4), 459–477. https://doi.org/10.3233/NRE-192687 (https://pubmed.ncbi.nlm.nih.gov/31256086/). *Tesis doctoral próximamente disponible :)
    --------  
    1:40:08
  • #72: ¿Existen los Generadores Centrales de Patrones (CPG) de la marcha en humanos?
    En el episodio de hoy, tratamos de responder a la pregunta que formulamos, sobre todo matizando la autonomía o no de esos CPGs en la médula humana. Revisamos los principales autores y estudios sobre el tema y ahondamos en la evidencia más actual sobre el sistema de interneuronas que conforman los CPGs y las implicaciones para la neurorrehabilitación (estimulación epidural y terapia intensiva). Referencias del episodio: 1. Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P., & Harkema, S. J. (2014). Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain : a journal of neurology, 137(Pt 5), 1394–1409. https://doi.org/10.1093/brain/awu038 (https://pubmed.ncbi.nlm.nih.gov/24713270/). 2. Barkan, C. L., & Zornik, E. (2019). Feedback to the future: motor neuron contributions to central pattern generator function. The Journal of experimental biology, 222(Pt 16), jeb193318. https://doi.org/10.1242/jeb.193318 (https://pmc.ncbi.nlm.nih.gov/articles/PMC6739810/). 3. Brown, T. G. (1911). The Intrinsic Factors in the Act of Progression in the Mammal. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(572), 308–319. http://www.jstor.org/stable/80647 (https://www.jstor.org/stable/80647). 4. Cherni, Y., Begon, M., Chababe, H., & Moissenet, F. (2017). Use of electromyography to optimize Lokomat® settings for subject-specific gait rehabilitation in post-stroke hemiparetic patients: A proof-of-concept study. Neurophysiologie clinique = Clinical neurophysiology, 47(4), 293–299. https://doi.org/10.1016/j.neucli.2017.01.008 (https://pubmed.ncbi.nlm.nih.gov/28318816/). 5. Courtine, G., Gerasimenko, Y., van den Brand, R., Yew, A., Musienko, P., Zhong, H., Song, B., Ao, Y., Ichiyama, R. M., Lavrov, I., Roy, R. R., Sofroniew, M. V., & Edgerton, V. R. (2009). Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nature neuroscience, 12(10), 1333–1342. https://doi.org/10.1038/nn.2401 (https://pubmed.ncbi.nlm.nih.gov/19767747/). 6. Dietz V. (2010). Behavior of spinal neurons deprived of supraspinal input. Nature reviews. Neurology, 6(3), 167–174. https://doi.org/10.1038/nrneurol.2009.227 (https://pubmed.ncbi.nlm.nih.gov/20101254/). 7. Dimitrijevic, M. R., Gerasimenko, Y., & Pinter, M. M. (1998). Evidence for a spinal central pattern generator in humans. Annals of the New York Academy of Sciences, 860, 360–376. https://doi.org/10.1111/j.1749-6632.1998.tb09062.x (https://pubmed.ncbi.nlm.nih.gov/9928325/). 8. Dzeladini, F., van den Kieboom, J., & Ijspeert, A. (2014). The contribution of a central pattern generator in a reflex-based neuromuscular model. Frontiers in human neuroscience, 8, 371. https://doi.org/10.3389/fnhum.2014.00371 (https://pmc.ncbi.nlm.nih.gov/articles/PMC4071613/). 9. Gizzi, L., Nielsen, J. F., Felici, F., Moreno, J. C., Pons, J. L., & Farina, D. (2012). Motor modules in robot-aided walking. Journal of neuroengineering and rehabilitation, 9, 76. https://doi.org/10.1186/1743-0003-9-76 (https://pubmed.ncbi.nlm.nih.gov/23043818/). 10. Gosgnach S. (2022). Synaptic connectivity amongst components of the locomotor central pattern generator. Frontiers in neural circuits, 16, 1076766. https://doi.org/10.3389/fncir.2022.1076766 (https://pmc.ncbi.nlm.nih.gov/articles/PMC9730330/). 11. Grillner, S. (1981). Control of Locomotion in Bipeds, Tetrapods, and Fish. Comprehensive Physiology, 1179-1236 (https://onlinelibrary.wiley.com/doi/10.1002/cphy.cp010226). 12. Guertin P. A. (2014). Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients. Frontiers in human neuroscience, 8, 272. https://doi.org/10.3389/fnhum.2014.00272 (https://pubmed.ncbi.nlm.nih.gov/24910602/). 13. Harkema, S., Gerasimenko, Y., Hodes, J., Burdick, J., Angeli, C., Chen, Y., Ferreira, C., Willhite, A., Rejc, E., Grossman, R. G., & Edgerton, V. R. (2011). Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet (London, England), 377(9781), 1938–1947. https://doi.org/10.1016/S0140-6736(11)60547-3 (https://pubmed.ncbi.nlm.nih.gov/21601270/). 14. Kathe, C., Skinnider, M. A., Hutson, T. H., Regazzi, N., Gautier, M., Demesmaeker, R., Komi, S., Ceto, S., James, N. D., Cho, N., Baud, L., Galan, K., Matson, K. J. E., Rowald, A., Kim, K., Wang, R., Minassian, K., Prior, J. O., Asboth, L., Barraud, Q., … Courtine, G. (2022). The neurons that restore walking after paralysis. Nature, 611(7936), 540–547. https://doi.org/10.1038/s41586-022-05385-7 (https://pubmed.ncbi.nlm.nih.gov/36352232/). 15. Minassian, K., Jilge, B., Rattay, F., Pinter, M. M., Binder, H., Gerstenbrand, F., & Dimitrijevic, M. R. (2004). Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal cord, 42(7), 401–416. https://doi.org/10.1038/sj.sc.3101615 (https://pubmed.ncbi.nlm.nih.gov/15124000/). 16. Minassian, K., Persy, I., Rattay, F., Dimitrijevic, M. R., Hofer, C., & Kern, H. (2007). Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle & nerve, 35(3), 327–336. https://doi.org/10.1002/mus.20700 (https://pubmed.ncbi.nlm.nih.gov/17117411/). 17. Radhakrishna, M., Steuer, I., Prince, F., Roberts, M., Mongeon, D., Kia, M., Dyck, S., Matte, G., Vaillancourt, M., & Guertin, P. A. (2017). Double-Blind, Placebo-Controlled, Randomized Phase I/IIa Study (Safety and Efficacy) with Buspirone/Levodopa/Carbidopa (SpinalonTM) in Subjects with Complete AIS A or Motor-Complete AIS B Spinal Cord Injury. Current pharmaceutical design, 23(12), 1789–1804. https://doi.org/10.2174/1381612822666161227152200 (https://pubmed.ncbi.nlm.nih.gov/28025945/). 18. Reier, P. J., Howland, D. R., Mitchell, G., Wolpaw, J. R., Hoh, D., & Lane, M. A. (2017). Spinal cord injury: repair, plasticity and rehabilitation. eLS, 1-12 (https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0021403.pub2).
    --------  
    48:24

Más podcasts de Ciencias

Acerca de Hemispherics

Hemispherics, el podcast de Fisioterapia y Neurorrehabilitación, presentado por Javier Sánchez Aguilar. En este podcast podrán encontrar: • Reseñas de libros de neurociencia, neurorrehabilitación, fisioterapia. • Comentarios de revisiones y artículos científicos relacionados con la fisioterapia y la neurorrehabilitación. • Visibilización de investigadores/as. • Exposición de temas específicos detallados sobre fisioterapia y neurorrehabilitación. • Entrevistas a fisioterapeutas y especialistas en neurorrehabilitación.
Sitio web del podcast

Escucha Hemispherics, Hidden Brain y muchos más podcasts de todo el mundo con la aplicación de radio.net

Descarga la app gratuita: radio.net

  • Añadir radios y podcasts a favoritos
  • Transmisión por Wi-Fi y Bluetooth
  • Carplay & Android Auto compatible
  • Muchas otras funciones de la app
Aplicaciones
Redes sociales
v7.7.0 | © 2007-2025 radio.de GmbH
Generated: 2/14/2025 - 8:29:11 PM